

Laboratory to commercial scale micro-algae culturing: success, failures and opportunities

David Lewis PhD

Founding Partner GO₂ Water Leader Microalgal Engineering Research Group President Asia-Pacific Society of Applied Phycology

Scope

- Introduction
- Culturing
- Success stories
- Failures
- Conclusions

Introduction

Context

- no high value products considered

- Low cost potential uses of micro-algae
 - Sustainable wastewater treatment
 - Biomass production for renewable energy
- Challenges for micro-algal energy
 - Cost of production
 - Nutrients

N & P

- Redfield ratio
 - C:N:P
 - 106:16:1
- 100,000 barrel/year microalgal plant
 - 800 tonne P
 - 5000 tonne N

Copyright 2009 GO2 Water, Inc.

Anaerobic digestion & CH₄

- Advantages
 - AD suitable for high-strength industrial wastes
 - Accepts high loading rates
 - AD can biodegrade xenobiotic compounds
 - Chlorinated aliphatic hydrocarbons, trichloroethylene, recalcitrant compounds including lignin

Anaerobic digestion & CH₄

- Disadvantages
 - Slower process that aerobic digestion
 - Sensitive to toxicants
 - Long start up period
 - Require high concentrations of primary substrates

AIWPS® TECHNOLOGY COMPONENTS

- Headworks (screening, grit removal, flow measurement, flow distribution)
- In-Pond Digesters (IPDs)
- Advanced Facultative Ponds (AFPs)
- Algal High Rate Ponds (HRPs)
- Algae Settling Ponds (ASPs)
- Maturation Ponds (MPs)
- Algae Drying Beds (ADBs)
- Downstream Tertiary Processes

Pilot-Scale AIWPS[®] WWTP

UC Berkeley's Engineering Field Station in Richmond, California Copyright 2009 GO₂ Water, Inc.

City of St. Helena AIWPS[®]WWTP c. 1967

Copyright 2009 GO2 Water, Inc.

Environmental Quality

- Highest Effluent Quality of all WWT Processes at Least Cost
- No Odors
- No Sludge
- Safe Water Reuse for Agriculture and Aquaculture
- Safe Nutrient Recycle through Algal Biomass
 used as a Animal or Fish Feed or Fertilizer
- Enhanced Work Place Safety & Aesthetics
- Compatible with Parks & Urban Greenbelts

Mean BOD Removal by AIWPS[®] Process

Copyright 2009 GO₂ Water, Inc.

Mean Total Nitrogen Removal

Copyright 2009 GO₂ Water, Inc.

Pathogen Removal

Copyright 2009 GO₂ Water, Inc.

Comparative Energy Use

Copyright 2009 GO₂ Water, Inc.

Scale – oil from algae

- Dilute cultures (0.5 1.0 g_{AFDW}/L)
- Large surface areas required (100's hectares)
- Extremely low cost product (~\$1/kg lipid)
- Massive-scale production
- Technically feasible for decades²
- No commercial fully integrated plant in operation³

² Burlew, J. S. (1953). Algal Culture: From Laboratory to Pilot Plant, (Publication No. 600) DC Carnegie Institution of Washington ³Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M. and Darzins, A. (2008). Microalgaltriacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant Journal, 54(4), 621-639

Laboratory scale

- Suitable for initial screening
- Biological systems very difficult to scale up (or down)
- Don't assume productivities etc are reproducible at scale
- Know you product and species before choosing the right system*

*M.A. Borowitzka(1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. Journal of Biotechnology

Commercial processes

Species	Used for	Where grown	Main culture system(s)	Estimated cost of production (\$AUS.kg ⁻¹)
Chlorella spp	Health food, health food extracts	Japan, Indonesia, Germany	Open circular pivot ponds, raceway ponds. Tubular photobioreactors	15+
Spirulina spp	Health food, health food extracts	Japan, Taiwan, Thailand, USA,China, India	(Germany only) Raceway ponds	8-12
Dunaliella salina	β-carotene	Australia, India	Extensive open ponds, raceway ponds (in India)	8+
Haematococcus pluvialis	astaxanthin	USA, Israel	Raceway ponds (USA), closed photobioreactor (Israel)	40+ (photobioreactor)
Crypthecodinium cohnii	DHA	USA	Heterotrophic cultivation on glucose	~2
Chaetoceros spp. Nannochloropsis spp. Navicula spp. Tetraselmis spp. Pavlova sp. etc.	Feed for aquaculture species	Throughout the world	Raceway ponds, tanks, large bag reactors	80-2000-

Similar latitude and geography as Walvis Bay!!

Karratha - Site for fully integrated pilot plant: 3 x200m²raceway ponds commission date July 2010

Murdoch University Algae R&D Centre

OUR PROJECT University of Adelaide Microalgal Engineering Research Group

Harvesting – system under development

- Liquid constrained
 - 0.050 kWh.m⁻³ (\$0.01/L lipid [7c/kWh])
 0.05-1 to 1-2% solids
 - $-t_d \sim 30$ minutes
- Developing combined harvesting + extraction unit operation

Failures

- Greenfuels primary reason is they used closed photo-bioreactors reactors for a low value product - fuel!
 - Mass transfer excessive O₂ limits growth!
 - Excessive capital and operational costs
 - Contamination issues closed reactors are inherently difficult to maintain axenic conditions
 - Heat PBRs get very hot in direct sunlight

Conclusions

- AIWPS sustainable wastewater treatment
- Can produce methane and recycle N & P from harvested biomass
- Oil rich algae can be grown in open saline water ponds
- Large scale algal farming will create jobs and renewable energy
- Sustainable reduce CO₂ footprints
- Scalable (once you are out of the lab!)
- "Horses for courses" what process is suitable for one algal species might be unsuitable for another

Thankyou

- Larry
- ACP
- Pat & Jeff
- Sorry for not being present!

Adelaide AUSTRALIA Welcomes 8th Asia Pacific Conference on Algal Biotechnology July 2012

'Challenges and opportunities for microalgae and seaweed in the Asia Pacific region'